Python开发高频量化策略 速度优化避坑指南
# 前言
因为目前已经切换成Rust做交易系统了,并且使用我们的交易系统Http下单比Rust的ureq库快1ms,比Python的request库快3ms,所以分享一些我使用Python做高频策略所遇到的坑。
我们目前技术栈:
- 纯Golang交易系统和策略,系统延迟大概在80us左右
- Rust交易系统加载Python策略,纯Rust系统延迟10us以内,一旦加载Python的策略就会增加50us。
- Golang开发Web后台后端
为什么做策略要用Python?不纯Rust?
因为很多做策略开发的研究员,学习Rust开发策略,原来Python一周就可以上线的策略,用Rust要至少一个月起步。
而且Python很赚钱的策略,研究员去复现成Rust,结果还不如Python赚钱,因为写法不能完全复制,哈哈哈。
我本身是做黑客和Web全栈+Python爬虫做了好几年后面转量化。
像我这样,技术特别强,策略也特别强,少之又少。
(别问我为什么不继续黑客,我不想出国也不想包吃包住)
#1 使用事件驱动而非轮询
一般的研究员,习惯用循环去查询当前最新价格,比如:
while 1:
price = ....
time.sleep(0.001)
这个速度也不错,但是缺陷很明显,天然就比竞争对手慢1ms,并且大量消耗CPU
正确的做法,建立一个websocket订阅最新价格bbo,并且收到行情就执行一次策略:
def trade(price):
策略code
websocket("BTCUSDT", callback=trade)
#2 不用多线程
很多Quant做交易系统和策略开发会习惯启动多线程去做一些事情,但是Python创建多线程所需要的系统耗时平均需要0.1ms!如果波动大,同时创建的多,耗时1ms也会经常出现,所以策略code里面不要用多线程。
测试代码:
import threading
import time
def NowTimeMs():
return int(time.time()*1_000_000)
def worker(t):
print((NowTimeMs() - t) / 1000, 'ms')
print('TEST')
threads = []
for i in range(100):
t = threading.Thread(target=worker, args=(NowTimeMs(),))
#t.setDaemon(True)
t.start()
#3 不用loop.create_task()
这个比多线程还糟糕,行情多,在策略里面多次创建create_task任务,直接1秒之后再执行你的操作。。
#4 少用字符串 + 号拼接
这个是Python的一个特性,用+号拼接会增加系统延迟,具体原因可以问chatgpt,应该用f"{}",或者format
#5 不要用print函数
没想到吧?这个也会增加你的系统耗时,平均一次10us,而且很多哦~ 如果有统计的需求,可以把要打印的内容append到数组里,最后策略运行结束再打印
测试代码:
import time
def NowTimeMs():
return int(time.time()*1_000_000)
for i in range(10):
t = NowTimeMs()
for i in range(10):
print("啦啦啦啦啦啦")
print((NowTimeMs() - t) / 1000, 'ms')
#6 不要用loguru
看过很多人的策略代码,都用loguru去记录日志,执行大概0.27ms一次吧
from loguru import logger
# 设置异步日志记录到文件
logger.add("multiArbitrage1.log", rotation="10 MB", enqueue=True, backtrace=True, diagnose=True)
import time
def NowTimeMs():
return int(time.time()*1_000_000)
for i in range(10):
t = NowTimeMs()
for i in range(10):
# print("啦啦啦啦啦啦")
logger.debug(f'666666666')
print((NowTimeMs() - t) / 1000, 'ms')
#7 用aiohttp
aiohttp天然就比request库快,所以用aiohttp库会更好,然后有websocket的下单api 都用websocket
当然我们也编写了一个用rust封装的http库,python调用去下单比request快个1-2ms
#8 最后
事件驱动 + 协程 + aiohttp + Websocket下单