DMI策略
温馨提示:本文最后更新于2021年12月3日 16:29,若内容或图片失效,请在下方留言或联系博主。
1.策略原理
很简单的一个策略,只用了DMI一个指标
获得DMI两条线后相减,再把值做平滑处理
值 > 0 且大于上一个值 就做多
DMI指标的计算可以看我发过的ADX指标里面有
代码:
"""
DMI指标策略
"""
def DMI(r, df, seting):
a, b = DI(r, seting['dmi_len'])
df['dmi'] = a-b
if seting['ma_type'] == 'sma':
df['dmi'] = SMA(df['dmi'].values, seting['ma_len'])
if seting['ma_type'] == 'ema':
df['dmi'] = talib.EMA(df['dmi'].values, seting['ma_len'])
if seting['ma_type'] == 'rma':
df['dmi'] = RMA(df['dmi'].values, seting['ma_len'])
c = len(df)
for i in range(c):
if i > seting['ma_len'] and i+1 < c:
if df['dmi'][i] > 0 and df['dmi'][i] > df['dmi'][i-1]:
df['side'].values[i] = 'BUY'
if df['dmi'][i] < 0 and df['dmi'][i] < df['dmi'][i-1]:
df['side'].values[i] = 'SELL'
return df
2.回测结果
15mk线 2021年: